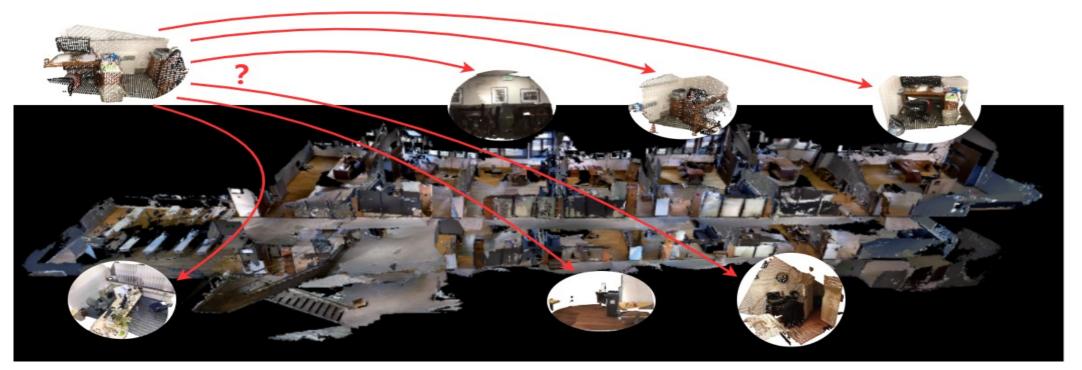
AEGIS-Net: Attention-Guided Multi-Level Feature Aggregation for Indoor Place Recognition

<u>Yuhang Ming</u>^{1,2*}, Jian Ma^{3*}, Xingrui Yang⁴, Weichen Dai^{1,2}, Yong Peng^{1,2}, Wanzeng Kong^{1,2}

School of Computer Science, Hangzhou Dianzi University;
Zhejiang Key Laboratory of Brain-Machine Collaborative Intelligence;
Unaffiliated; 4 High-speed Aerodynamics Institute, CARDC.


Dataset

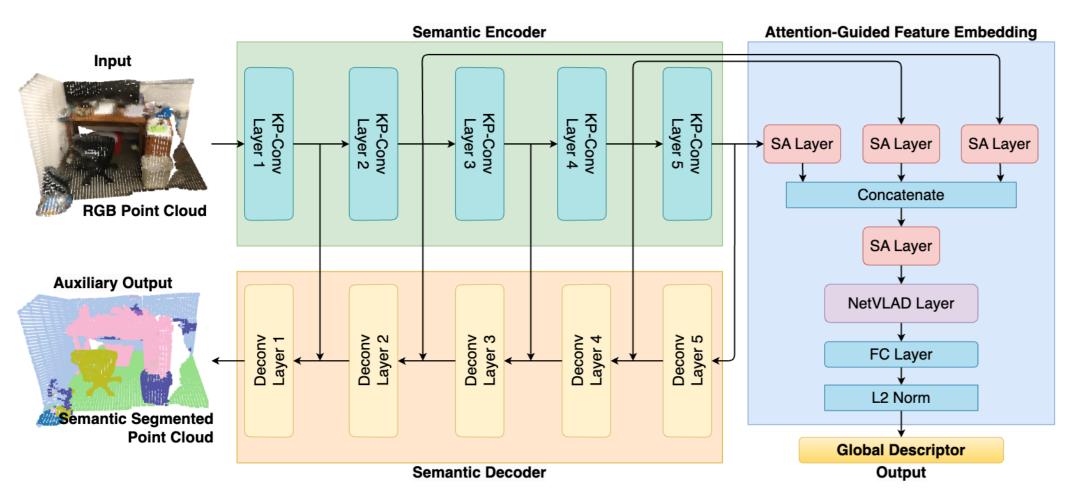
- ScanNetPR: derived from ScanNet with keyframe selection based on camera movement, then the RGB point clouds are generated from these selected keyframes
 - Total: 807 different indoor scenes and 1,613 RGB-D scans
 - Training: 565 scenes, 1,201 scans and **35,102** keyframes
 - Validation: 142 scenes, 312 scans
 - and 9,693 keyframes
 - Test: 100 scenes, 100 scans and **3,608** keyframes

Evaluation

- Generating place recognition database
 - Database point clouds are selected at least 3 meters apart

Motivation

- **Goal** Indoor place recognition with RGB point clouds
- Challenges
 - Limited amount of information caused by the close proximity of the sensor
 - Similar appearance and structure among difference places
- Contributions



BérCI

- Propose a 2-stage multi-task learning approach to utilize geometry, colour, implicit semantic features
- Introduced an adaptive feature aggregation with self-attention layers
- Comparison with a traditional feature-based method and four state-ofthe-art deep learning-based methods and significantly outperform all six methods.

Network Architecture & Training Procedure

Feature Ve

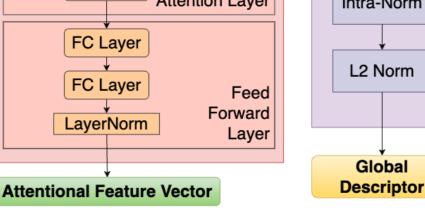
FC

Layer

Matri

Matrix Mu

FC

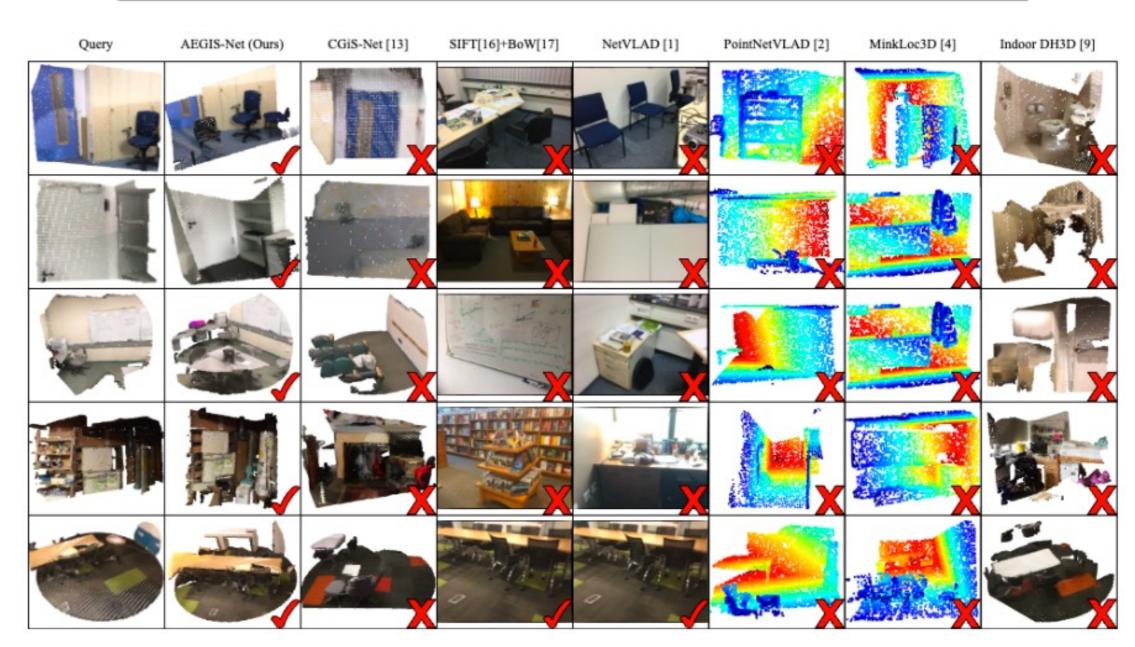

- Main Components
 - Semantic Encoder: 5 deformable kernel point convolution (KP-Conv) layers;
 - Semantic Decoder: 5 layers of nearest upsampling followed by unary convolution;
 - Attention-Guided Feature Embedding: 4 self-attention layers

ctor (Self-Attention	herread East	er
	Attentional Feature Vector	or
FC FC Layer	Conv (w, b)	
x Multiplication	1x1xDxK	
Scale •••	Softmax	
Softmax Itiplication		
Concatenate	VLAD Core	
Layer Multi-head	Intra-Norm	

- Result in 236 database point clouds, 3,372 test point clouds
- Evaluation Criterion
 - Threshold for successful retrievals: 3 meters
 - Criterion: Top-K average recall rate (%)
- Comparison Counterparts
 - Baseline: SIFT + BoW
 - Advanced learning-based methods: CGiS-Net, Indoor DH3D, MinkLoc3D, PointNetVLAD, NetVLAD.
- Ablation Study
 - Efficiency: AEGIS-Net converges after 20 epochs, CGiS-Net, on the other hand, needs 60 epochs. When restricting the training epochs to 20, CGiS-Net exhibits a significant performance degradation
 - Attention Mechanism: Removing the self-attention layer before and after feature concatenation results a drastic drop in the place recognition performance.

Methods	R@1	R@2	R@3
AEGIS-Net (Ours)	65.09	74.26	79.06
CGiS-Net [13]	61.12	70.23	75.06
SIFT [16] + BoW [17]	16.16	21.17	24.38
NetVLAD [1]	21.77	33.81	41.49
PointNetVLAD [2]	5.31	7.50	9.99
MinkLoc3D [4]	3.32	5.81	8.27
Indoor DH3D [9]	16.10	21.92	25.30
CGiS-Net-20 [13]	56.82	66.46	71.74
AEGIS-Net (w/o attention)	55.13	66.19	71.95

with 3 applied on features extracted from layer 2, 4, 5 and the other applied on their concatenation; and 1 NetVLAD layer for feature aggregation.


Training Procedure

- **Stage 1:** train the semantic encoder and semantic decoder on the semantic segmentation task
- **Stage 2:** discard the semantic decoder and train the attention-guided feature embedding with the weights in the semantic encoder fixed

• Loss

- Lazy quadruplet loss

$$\mathcal{L}_{LazyQuad}(\mathcal{T}) = \max_{i,j} ([\alpha + \delta_i^{pos} - \delta_j^{neg}]_+) + \max_{i,k} ([\beta + \delta_i^{pos} - \delta_k^*]_+)$$

Contact: yuhang.ming@hdu.edu.cn